Polymeric Semiconductors: Molecular Ordering, Charge Transport and Macroscale Mobility

Elsa Reichmanis

School of Chemical and Biomolecular Engineering School of Chemistry and Biochemistry School of Materials Science and Engineering Georgia Institute of Technology

An Introduction to Georgia Tech

One of the **oldest** ChBE programs in the US Founded in 1901

One of the largest ChBE programs in the US

215+ Graduate students900+ Undergraduate students45 Faculty

One of the **most respected** ChBE programs in the US

Undergraduate and Graduate Programs ranked in top 10 College of Engineering ranked in top 5 internationally

Polymers in Electronics and Photonics

Materials and Processes

- Lithographic materials and processes
 - Silicon device processing
- Dielectric materials (low and high-k)
 - Packaging materials

 Organic semiconductor materials for plastic electronics
 Active device layers

'All-Printed' Plastic Electronics

Silicon based semiconductor technology today:

- Conducted in *\$5B+* Fabs (clean rooms a must!)
- Features smaller than 30 nm
- Rigid, inflexible 12" diameter substrates
- Subtractive processing

All-printed plastic electronics alternative:

- Using cost-effective printing presses, or even ink-jet printers
- Large-area, reel-to-reel processing
- Flexible, conformable, bendable plastic and paper-like substrates
- Additive,'ink-like' processing

Semiconductor Mobility Magnitudes (cm²/Vs)

Semiconductor	Mobility
Silicon single crystal	>1,000
Polysilicon	100
Amorphous silicon	0.1-1
Single nanotube	100-1,000
Organic single crystal	10
Pentacene film	1-10
Polycrystalline sublimed organic	0.01-10
Soluble oligomer/polymer	0.01->1

Advantages of Organics

- mobilities can be more uniform, and less limited by surface states and grain boundaries
- covalent integration with molecular receptors for sensors
- moderate temperature processing
- large area coverage, solution deposition possible
- mechanical and thermal compatibility with plastic and other flexible substrates
- rational control of polarity and threshold voltage, for circuit tuning and memory applications

Charge Transport in Organic Semiconductors:

Materials Issues

Device Issues

Process Issues

Needs:

Increased electrode conductivity Increased semiconductor mobility Improved gate dielectric

Decreased conductor resistivity: understand mechanism Control of carrier transport in organics Control of FET properties: effect of impurities, charge traps, etc Charge injection

Identify critical limiting bulk/surface Improved semiconductor properties Control of thin film morphology

Polymers in Electronics and Photonics

Polymer/hybrid materials and processes for *plastic electronics* and photovoltaics:

- Design and development of new materials chemistries
- Develop structure-processproperty relationships to guide robust materials and process design
- Understand and utilize mechanisms associated with thinfilm morphology evolution.

Order and Disorder

STRUCTURE PROPERTY RELATIONS

MECHANISM OF CONDUCTING CHANNEL FORMATION

CONTROL OF MICROSTRUCTURE

ROLE OF CRYSTALLINITY

CONJUGATION EFFECTS: INTRA- VS INTER-CHAIN Semiconducting polymer properties strongly dependent on *final* thin film morphology (microstructure).

highly process dependent

Microstructure development *during film formation* not well understood

Role of Microstructure

Sirringhaus et.al. Nature 1999, 401, 685. Regioregularity dependent texture

Kline et.al., Adv. Mater. 2003, 15, 1519. Effect of polymer MW

Kim et.al., Adv. Func. Mater. 2005,15, 77 Semiconductor-dielectric interface

J. Am. Chem. Soc. 2011, 133, 7244. J. Phys. Chem. C 2011, 115, 11719.

* Aiyar, et al., Chem, Mater. 2012

What is the role of microstructure?
How can microstructure be *tuned*?

Australia, June 2014

Conducting Channel Formation

- Drain current fluctuates during film formation
- Polymer chains rearrange as a function of time: percolation effects
- Bulk vs interface effects
- Evolution of microstructure?

Extending Solvent Evaporation Time

- Time required for conducting channel formation scales with solvent evaporation rate
- As evaporation proceeds, polymer concentration increases percolation

Correlation with Structure?

- Lyotropic LC phase coincident with sharp increase in current
- Long range order in LC phase
 - Potential consequences for macroscopic charge transport

Sharp Onset of the Drain Current

Raman Spectral Changes

Crystalline vs Amorphous Phases

Raman spectroscopy: regio-regular P3HT (Semi-crystalline) vs. regio-random P3HT (Amorphous)

Evolving Microstructure

Asymmetric peak shape evolves rapidly into a symmetric profile

Rapid nucleation and crystallization of P3HT chains

Liquid Crystal Poly(3-hexylthiophene) Solutions

Polarized Optical Microscopy of aged P3HT solutions show long-range order and monodomain character

Processing: Ultrasound Induced Effects

Absorbance (AU)

Pristine
 5 min sonicated
 Pristine
 5 min sonicated

- Film-like properties apparent in solution state
- Increased
 backbone
 planarization
- Increased π- π stacking evidenced by (0-0) transition in solid state

Color emanates from additional low energy transitions

Microstructure and Crystallinity

Impact on Charge Transport

Australia, June 2014

Multiphase Morphology

Solvent Characteristics and Molecular Ordering

Impact of binary solvent:

- high volatility
- hydrogen bonds with the majority solvent

M. Chang, et al, ACS Nano, 2013

Hansen Solubility Parameter Analysis

Mechanistic Illustration of Molecular Ordering

- Molecular ordering of P3HT chains and subsequent charge transport characteristics of resultant thin films can be influenced through solvent characteristics
- Hansen solubility parameters provide valuable insight into the relationships between thin-film morphology, molecular ordering and device performance

P3HT Aggregation Revisited

Rational Design of Branched Side Chains for Enhanced Mobility

Polymer Design:

- DPP deepens HOMO energy level further enhancing air stability
- ICT (formed by BT-thiophene-DPP coupling) narrows bandgap
- Fused feature of DPP facilitates charge carrier transport

C₁₀H₂₁

C₁₀H₂

 $C_{12}H_{25}$

Polymer Characterization

C10H21

Australia. June 2014

30 **\bullet**... **\bullet** π-π stacking distance

pTBTD-2DT

300

200

qxy

400

300

200

q_{xy}

pTBTD-2DT

22.07

3.73

100

100

е

No annealing

Annealed

pTBTD-5DH

24.88

3.61

C12H25

C₁₂H₂₅

C10H21

200

q_{xy}

200

100

q_{xy}

100

pTBTD-OD

100

q_{xy}

300

q_{xy}

pTBTD-OD

22.29

3.62

C10H21

C12H25.

g

No annealing

010

Annealed

h

due to branching position (reduced steric hindrance between side chains)

Mobility and Side Chain Design

Conclusions

Molecular structure in conjunction with materials processing influences electronic properties/device performance of polymeric semiconducting materials

- All aspects of structure, regioregularity, molecular weight, molecular weight distribution, substitution pattern, etc. have a significant impact on conjugated polymer performance.
- Impact of intermediate phases between the isotropic solution and crystalline states requires investigation.

Georgia Tech

Avishek Aiyar* **Mincheol Chang** Rui Chang Dalsu Choi **Ping Hsun Chu** Boyi Fu Jeff Hernandez Ji-Hwan Kang Nabil Kleinhenz Jiho Lee* Nils Persson Ashwin Ravi Sankar* Gang Wang Zhaokang Hu Byoungnam Park Elena Argyropais **Daniel Acevedo*** Nathan Bates Jessica Daigle Jessica Izumi* John Jang Yundi Jiang Abishek Mukund **Orayne Mullings** Jamillah Parsons **Caryn Peeples*** Luis Reyes* Sven Schlumpberger Mohan Srinivasarao Karthik Navani Min Sang Park* Jung-II Hong* David Collard Martha Grover **Rakesh Nambiar*** John Reynolds Laren Tolbert Samuel Graham

Acknowledgements

Bell Labs, Alcatel-Lucent

- O. Nalamasu
- S. Yang
- E. A. Chandross
- Z. Bao
- H. E. Katz
- A. Maliakal
- S. Vaidyanathan
- S. Liu

Funding NSF – CMDITR NSF – DMR AFOSR ACS-PRF Georgia Tech

Australia, June 2014